参考資料 採択プロジェクトの概要

プロジェクト名称	理学療法士向けソフトウェア搭載型歩行リハビリ用ウ	
	ェアラブルロボットの開発	
代表事業者	株式会社 INOMER	
共同事業者	_	
プロジェクト概要	理学療法士が脳卒中片まひ者へ行う介助を再現	
	する着るロボットと、リハビリテーションの実施、管理を	
	行うロボットシステムを開発します。	
	このロボットシステムは、着脱が容易で、歩行リハビ	
	リテーションにおいて重要なポイントの一つである股	
	関節への適切な介入をボタン一つで実現し、立脚期	
	の正しい姿勢を維持しつつ股関節の伸展を促進しま	
	す。	(画像提供:株式会社
	これにより、理学療法士の介助の再現性を担保し	INOMER)
	つつ、リハビリテーションの実施状況、ロボットから得	
	られるセンサデータを定量的に分析、記録、管理す	
	ることで理学療法士の技術の蓄積及び歩行リハビリ	
	テーション全体の質の向上にもつなげます。	

プロジェクト名称
代表事業者
共同事業者
プロジェクト概要

		T
プロジェクト名称	食事介助ロボットの開発	
代表事業者	ダブル技研株式会社	
共同事業者	_	
	上肢機能障害や麻痺により自力での食事が難し	
プロジェクト概要	い方々のために、食事を支援するロボットを開発しま	(画像提供:ダブル技研株式会社)
	す。	
	このロボットは、利用者が自立して食事を楽しめる	
	ように設計されており、食事の満足感を損なうことな	
	く、QOL(生活の質)の向上を目指しています。	
	ロボットは通常の食事テーブルに簡単に設置で	
	き、身体機能に合わせたスイッチ操作で動作します。	
	手や足、音声による操作が可能で、利用者は自分の	
	ペースで4つのお皿から食べたいものを選ぶことが	
	できます。	
	また、このシステムは介護者や施設、病院における	
	食事介助の負担を軽減することを目的としています。	
	食事介助にかかる時間や労力を削減し、介護者が他	
	のケアに集中できるよう支援します。ロボットによるサ	
	ポートは、介護の質を維持しながら、利用者と介護者	
	双方にとってより良い生活環境を提供します。	

プロジェクト名称	狭隘(きょうあい)空間点検ロボットの開発			
代表事業者	株式会社ワークロボティクス			
共同事業者	ĺ			
	人が入れない狭隘部の点検に特化した革新的な			
	ロボットを開発します。建設されてから 50 年以上が経			
	過した建築物が今後も増加する中で、狭隘部を安全			
	に長時間点検できるロボットは、現時点では存在しま			
	せん。	Taken (
	このロボットは、耐環境性能と走破性能を高めた小	White I was a second		
	型の 6 クローラ型の設計です。前後のサブクローラア			
プロジェクト概要	ームを活用し、15cm 程度の障害物を乗り越え、凹凸	(画像提供:株式会社ワー		
	のある地形でもスムーズに旋回できる高い走破性を	クロボティクス)		
	備えます。さらに、ズームカメラやサーマルカメラを搭			
	載し、カメラの向きを自由に調整できる機構を組み込			
	むことで、点検作業の効率と精度を向上させます。			
	このロボットにより、人が入れない狭隘部の点検が			
	安全かつ効率的に行えるようになり、老朽化する建築			
	物の問題を早期に発見し、適切なメンテナンスを行う			
	ことで、建物の寿命延長と災害リスクの低減に貢献し			
	ます。			
2				